Modal interpolation via nested sequents
نویسندگان
چکیده
The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for modal logics by induction on a nested-sequent derivation. This algorithm is applied to all the logics of the so-called modal cube.
منابع مشابه
Multicomponent Proof-theoretic Method for Proving Interpolation Properties
Proof-theoretic method has been successfully used almost from the inception of interpolation properties to provide efficient constructive proofs thereof. Until recently, the method was limited to sequent calculi (and their notational variants), despite the richness of generalizations of sequent structures developed in structural proof theory in the meantime. In this paper, we provide a systemat...
متن کاملProof Theory for Indexed Nested Sequents
Fitting’s indexed nested sequents can be used to give deductive systems to modal logics which cannot be captured by pure nested sequents. In this paper we show how the standard cut-elimination procedure for nested sequents can be extended to indexed nested sequents, and we discuss how indexed nested sequents can be used for intuitionistic modal logics.
متن کاملNested Sequents
We see how nested sequents, a natural generalisation of hypersequents, allow us to develop a systematic proof theory for modal logics. As opposed to other prominent formalisms, such as the display calculus and labelled sequents, nested sequents stay inside the modal language and allow for proof systems which enjoy the subformula property in the literal sense. In the first part we study a system...
متن کاملModular Sequent Systems for Modal Logic
We see cut-free sequent systems for the basic normal modal logics formed by any combination the axioms d, t,b, 4, 5. These systems are modular in the sense that each axiom has a corresponding rule and each combination of these rules is complete for the corresponding frame conditions. The systems are based on nested sequents, a natural generalisation of hypersequents. Nested sequents stay inside...
متن کاملProof systems: from nestings to sequents and back
In this work, we explore proof theoretical connections between sequent, nested and labelled calculi. In particular, we show a general algorithm for transforming a class of nested systems into sequent calculus systems, passing through linear nested systems. Moreover, we show a semantical characterisation of intuitionistic, multi-modal and non-normal modal logics for all these systems, via a case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 166 شماره
صفحات -
تاریخ انتشار 2015